
FILEMAN DELPHI COMPONENTS
(FMDC)

GETTING STARTED GUIDE

Version 1.0

March 1998

Department of Veterans Affairs
VISTA Software Development

OpenVISTA Product Line

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide i

Table of Contents

FMDC Web Site .. iii

Related Manuals ..iv

1. Introduction.. 1-1

FMDC Data Access Components.. 1-2

FMDC Custom Dialogs ... 1-2

FMDC Data Control Components .. 1-3

FMDC Object Hierarchy ... 1-4

2. Quick Start Guide.. 2-1

3. How To: By VA FileMan Field Type .. 3-1

4. How To: By Task .. 4-1

Selecting a Record... 4-1

Retrieving a Record... 4-2

Providing Automated OnExit Processing for Controls.. 4-3

Saving a Record... 4-4

Editing Records from Several Files Simultaneously... 4-5

Other "How To" Tasks .. 4-5

5. Using Data Access Components Directly... 5-1

TFMGets: Retrieving a Record ... 5-1

TFMLister: Retrieving a List of Records.. 5-2

TFMValidator: Validating a Standalone Value... 5-3

TFMFiler: Filing Standalone Values ... 5-3

TFMFiler: Adding a Record .. 5-4

6. FMDC.HLP Help File .. 6-1

Table of Contents

ii FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide iii

FMDC Web Site

The FileMan Delphi Components web site provides up-to-date information
including FAQs, troubleshooting tips, and any code or documentation updates.
Check the web site:

• Before installing the FileMan Delphi Components.

• Periodically as you use the components, to keep in touch with the latest updates.

http://www.vista.med.va.gov/softserv/infrastr.uct/fmdc

http://www.vista.med.va.gov/softserv/infrastr.uct/fmdc

FMDC Web Site and Related Manuals

iv FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

Related Manuals

• FileMan Delphi Components V. 1.0 Installation Guide

Provides instructions for installing the FileMan Delphi Components V. 1.0.

• FMDC.HLP Help File

Provides complete information on the FileMan Delphi Components, including
full listings of each component’s methods and properties. See the "FMDC.HLP
Help File" chapter for more information.

• VA FileMan Programmer Manual

Provides complete information on the VA FileMan Database Server (DBS) API.
The FMDC data access components are wrappers around calls in the VA
FileMan Database Server (DBS) API. So having a DBS reference can be handy
when you’re working with data access components. An online version of this
documentation are available at the VA FileMan web page:

http://www.vista.med.va.gov/softserv/infrastr.uct/fileman

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 1-1

1. Introduction

This Getting Started Guide introduces developers to the FileMan Delphi
Components (FMDC) V. 1.0. It aims to quickly get you started building
Delphi applications that access VA FileMan data.

The FileMan Delphi Components make it easy for developers to work
with VA FileMan data in Delphi applications. The components
encapsulate the details of retrieving, validating and updating VA
FileMan data within a Delphi application. This saves you from creating
your own custom remote procedure calls (RPCs) when you need to access
VA FileMan data.

The FileMan Delphi Components also include special enhanced features
such as complete server-side error checking and data dictionary help.

If you’re already familiar with Delphi, the time needed to develop an
application to edit a set of VA FileMan fields using the FileMan Delphi
Components is comparable to the time needed to create the same
application using VA FileMan’s roll-and-scroll ScreenMan interface.

The FileMan Delphi Components provide three types of components:

• Data access components are invisible to the user, but contain the
functionality for calling the server to find, retrieve, validate, and file
data. Each of the data access components encapsulates the
functionality of one or more VA FileMan Database Server (DBS) calls.

• Custom Dialogs are like mini-applications you can include in your
own application. The TFMLookUp custom dialog makes it easy to
perform lookups in files with large numbers of records.

• Data controls are visual controls users can interact with to change
data values. For example, a TFMCheckBox control is good for editing
"Boolean" two-value set of codes fields; a TFMMemo control is good
for editing word processing fields; and a TFMEdit control is good for
editing free text fields. Data controls are directly populated by the
data access components. Values are directly validated and filed from
the controls by the data access components.

Introduction

1-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

FMDC Data Access Components

Component Icon Function

TFMGets Encapsulates the Data Retriever (GETS^DIQ) DBS call. Retrieves a record
from the server. Populates any associated data controls with field values of
the retrieved record.

TFMValidator Encapsulates the Validator (VAL^DIE) DBS call. Validates a data value
against the corresponding VA FileMan field on the server. If any associated
data control’s coValOnExit flag is True, the TFMValidator automatically
validates values entered in the control.

TFMFiler Encapsulates the Filer (FILE^DIE) and Updater (UPDATE^DIE) DBS calls.
Given a list of data controls with values to file, the TFMFiler collects those
values from the controls and files them.

TFMLister Encapsulates the Lister (LIST^DIC) DBS call. Retrieves a list of records
from the server. Optionally populates listbox-type data controls with the
retrieved list.

TFMHelp Encapsulates the Helper (HELP^DIE) DBS call. Retrieves field-based help
from the data dictionary on the server. Can automatically display help for a
data control’s field in a panel, whenever a user sets focus on a data control.

TFMFinder Encapsulates the Finder (FIND^DIC) DBS call. Finds one or more records
in a file that match a lookup value. Also used for lookups by
TFMComboBoxLookUp and the TFMLookup custom dialog.

TFMFindOne Encapsulates the Single Record Finder ($$FIND1^DIC) DBS call. Finds a
unique record in a file based on a lookup value; not linked with data
controls.

FMDC Custom Dialogs

 TFMLookUp

The TFMLookUp custom dialog
makes it easier to do lookups in
files with large numbers of records.

Introduction

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 1-3

FMDC Data Control Components

Component Icon Example Use For

TFMCheckBox "Boolean" two-value yes/no set
of codes fields.

TFMComboBox Pointer fields, record lookups.

TFMComboBoxLookUp Pointer fields, record lookups.
Does on-the-fly lookups of what
the user types in; good for
longer lists.

TFMEdit Free Text, Numeric, Date and
MUMPS fields.

TFMLabel Computed fields, Read-only
field values.

TFMListBox Pointer fields, record lookups.

TFMMemo Word-processing fields.

TFMRadioButton Set of codes fields.

TFMRadioGroup Set of codes fields.

Introduction

1-4 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

FMDC Object Hierarchy

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 2-1

2. Quick Start Guide

This Quick Start Guide demonstrates the basic approach to editing data with the
FileMan Delphi Components. This approach only uses a subset of the properties,
methods and components in the FileMan Delphi Components.

There are seventeen FileMan Delphi Components, and each one has a variety of
methods and properties that allow you to fine-tune its behavior. However, a basic
approach to using them, involving only a subset of their properties and methods, is
appropriate for most data editing situations.

To follow this basic approach: First, determine the set of fields you want to edit in
your Delphi application. Then follow this Quick Start Guide to provide that access
in your Delphi application.

To edit records in a given VA FileMan file with the FileMan Delphi Components

1. Establish an RPC Broker connection

a. Add a TRPCBroker component to your form.

b. Set its properties and invoke its methods as necessary to connect to a server system.

2. Add a TFMGets component to retrieve data

a. Add a TFMGets component to your form.

b. Set its RPCBroker property to point to your form’s TRPCBroker component.

c. Set its FileNumber property to the file containing records to retrieve.

3. Add a TFMFiler component to file changes

a. Add a TFMFiler component to your form.

b. Set its RPCBroker property to point to your form’s TRPCBroker component.

4. Add a TFMValidator component to provide validation services

a. Add a TFMValidator component to your form.

b. Set its RPCBroker property to point to your form’s TRPCBroker component.

Quick Start Guide

2-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

5. Add FileMan data controls for each field

a. For each field to edit, add data control(s) and supporting data access components to your
form as follows:

For this field type: Add to your form:

Free text, numeric, date 1 TFMEdit

"Boolean" set of codes 1 TFMCheckBox

1 TFMRadioGroup, orSet of codes

1 TPanel or TGroupBox, plus 1 TFMRadioButton per code

Word processing 1 TFMMemo

1 TFMLister and 1 TFMListBox, or

1 TFMLister and 1 TFMComboBox, or

Pointer

1 TFMLister and 1 TFMComboBoxLookUp

Computed 1 TFMLabel

b. For each field that you add component(s) for, set the field-type-specific properties of the
components according to the guidelines (listed by field type) in the "How To: By VA FileMan
Field Type" chapter below.

6. Select and retrieve a record

a. To select a record, follow the procedure in the "Selecting a Record" section below in the
"How To: By Task" chapter. You’ll add a TFMLookUp and TFMLister component to your
form, and add a button that calls TFMLookup’s Execute method to perform the lookup.

b. TFMLookUp.Execute returns a record number. Using it you can retrieve the record and
populate your data controls with the record’s field values. To retrieve the record, follow the
procedure in the "Retrieving a Record" section below in the "How To: By Task" chapter.
You’ll call TFMGets’ GetAndFill method to retrieve the record and populate data controls.

c. The OnClick event handler for the button that executes the TFMLookup.Execute method
(step a) can also perform the retrieval (step b). Code to do this would look like:

procedure TForm1.Button1Click(Sender: TObject);
var AddRecord:Boolean;
begin
 if FMLookup1.Execute(AddRecord) then begin
 FMGets1.IENS:=FMLookUp1.RecordNumber+’,’;
 // Call any TFMListBox/TFMComboBox GetList methods
 // here, before calling GetAndFill.
 FMGets1.GetAndFill;
 end
 else
 ShowMessage(’No record chosen.’);
end;

Compile your application. You can now retrieve records.

Quick Start Guide

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 2-3

7. Set up Automated OnExit Processing

a. Your data controls should already be
linked to a TFMFiler and a TFMValidator
component, from following the ”Data
Control Property Settings for All Field
Types" guidelines in the "How To: By VA
FileMan Field Type" chapter below.

b. Set every data control's coValOnExit
value to True, in each control's
FMCtrlOptions property.

About Automated OnExit Processing

This feature automatically validates a field
value in a data control when a user changes
it (this is the control's OnExit event). If the
changed value is valid, automated OnExit
processing adds the control to the
associated TFMFiler's component's list of
controls to file.

Compile your application. All changes to
fields in FileMan data controls will be
validated, and only accepted by the data
controls if valid.

8. Provide an event to save changes

a. To save changes the user makes to the record, follow the procedure in the "Saving a
Record" section below in the "How To: By Task" chapter. You'll add a button whose caption
is something like "Save Changes". You'll add code for this button's OnClick event handler
that calls your TFMFiler's Update method to file changes.

Compile your application. You can now file changes to the record

9. (Optional) Provide context-sensitive field help

There are several ways you can provide context-sensitive help for the VA FileMan fields being
edited:

• The first line of the DD help for a field can automatically be displayed in a display panel,
whenever a user sets focus to a control.

• All DD help for a field can be displayed when, with a particular control selected, the user
presses F1.

• Standalone help: you can retrieve DD help for any field and display it using your own
methods.

See the online FMDC.HLP help file for more information on providing context-sensitive help.

Quick Start Guide

2-4 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

10. Register your application

a. Create a "B"-type option in the Option file for your application.

b. In the option’s RPC multiple, include every Remote Procedure
Call (RPC) your application calls.

You need to include all RPCs invoked by methods of the FileMan
Delphi Components called by your application, as well as RPCs
you invoke yourself. The FMDC.HLP online help file details
which FMDC RPCs are called by FMDC component methods.

c. In your application’s OnCreate event, register the option name
using the broker’s CreateContext method. If registration fails,
your application should probably terminate. For example:

 if not RPCBroker1.CreateContext(’A6A APP1’)
 then Application.Terminate;

d. Users must have the registered "B"-type option assigned to them
in order to use your client application.

Bypass Security
During
Development

Possessing the
XUPROGMODE key
allows you as a
developer to bypass
RPC Broker
security.

Once you’re ready
to deploy your
application to non-
developer users,
your application will
need to register
itself appropriately.

For more
information on RPC
Broker security, see
the RPC Broker
documentation.

Compile your application. Users without the XUPROGMODE key should now be able to run
your application.

The FMDC data access components are wrappers around calls in the VA FileMan
Database Server (DBS) API. So having a DBS reference can be handy when you’re
working with data access components. For a complete DBS reference, see the VA
FileMan Programmer Manual. Online versions of this documentation are available at the
VA FileMan web page:

http://www.vista.med.va.gov/softserv/infrastr.uct/fileman

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 3-1

3. How To: By VA FileMan Field Type

This chapter shows which FileMan data controls are compatible with which VA
FileMan field types, and how to set the properties of the data controls.

For each FileMan data control you use on your form to edit a particular VA FileMan
field type, follow the corresponding procedure in this chapter to set the control’s
properties.

VA FileMan Field Types and Compatible Controls

Field Type Compatible Controls

Computed TFMEdit, TFMLabel

Date TFMEdit, TFMLabel

Free Text TFMEdit, TFMLabel

MUMPS TFMEdit, TFMLabel

Numeric TFMEdit, TFMLabel

Pointer TFMComboBox, TFMComboBoxLookUp, TFMListBox, TFMEdit,
TFMLookUp custom dialog

Set of Codes TFMCheckBox, TFMRadioButton, TFMRadioGroup, TFMEdit

Variable Pointer (must be done manually)

Word Processing TFMMemo

Data Control Property Settings for All Field Types

Set these properties for every FileMan data control you use.

1. Set the FMField and FMFile properties to the field and file
that the control is to edit.

2. Set the FMGets property to the TFMGets to use to retrieve
values.

3. Set the FMValidator property to the TFMValidator to use to
validate (except for TFMMemo controls, which do not
require validation).

4. Set the FMFiler property to the TFMFiler to use to file
changes.

5. (Optional) Set the FMCtrlOptions coValOnExit flag to True
to enable automated OnExit processing. For more
information, see "Providing Automated OnExit Processing
for Controls" below.

Hint In Delphi, to set a
property for a set of
controls to the same
value, select all of the
components
simultaneously (Hold
down the Ctrl key and
select each control).

Then, in Delphi’s Object
Inspector, in a single edit
of that property you set
the property value for all
selected controls.

How To: By VA FileMan Field Type

3-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

Free Text, Numeric, Date, MUMPS: TFMEdit

1. Add a TFMEdit component to your form.

2. Set its properties as described in "Data Control Property Settings
for All Field Types" above.

TFMEdit:

"Boolean" Set of codes (2 Yes/No Values): TFMCheckBox

1. Add a TFMCheckBox component to your form.

2. Set its properties as described in "Data Control Property Settings
for All Field Types" above.

3. Set its FMValueChecked and FMValueUnchecked properties to
the two internal codes (from the VA FileMan data dictionary) that
should be represented by the checked and unchecked states of the
control.

4. Set the Caption property to the label to display to the end-user
(typically the external value represented by the "True" internal
code).

TFMCheckBox:

Multi-Value Set of codes: TFMRadioGroup

1. Add a TFMRadioGroup component to your form.

2. Set its properties as described in "Data Control Property Settings
for All Field Types" above.

3. Populate its Items property (an array of TStrings) with the values to
display to the user for each code.

4. Populate its FMInternalCodes property with the internal values
(from the VA FileMan data dictionary) of the codes in the set of
codes field. Populate it in the same sequence, line-by-line and
code-by-code, that you populated the Items property with.

TFMRadioGroup:

Multi-Value Set of codes: TFMRadioButton

1. Place a TPanel or TGroupBox panel component on your form.

2. Place one TFMRadioButton per code directly from the component
palette onto the TPanel or TGroupBox. For example, for a 3-value
set of codes field, place 3 TFMRadioButtons directly from the
component palette onto the TPanel or TGroupBox.

3. Set each TFMRadioButton’s properties as described in "Data
Control Property Settings for All Field Types" above.

4. Set each TFMRadioButton’s FMValueChecked property to the
internal code (from the VA FileMan data dictionary) that should be
represented by the checked state of the control.

5. Set each TFMRadioButton’s Caption property to the label to
display to the end-user (typically the external value represented by
each code).

TFMRadioButton:

How To: By VA FileMan Field Type

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 3-3

Pointer: TFMListBox, TFMComboBox

1. Add a TFMListBox or TFMComboBox to your form. These
work best when the set of records is not huge.

2. Set its properties as described in "Data Control Property
Settings for All Field Types" above.

3. Add a TFMLister component to your form. It must be
dedicated entirely to servicing the pointer field.

4. Set the TFMLister’s FileNumber property to that of the
pointed-to file. Make sure its FieldNumbers property
contains at least ’.01’. Set its RPCBroker property to your
form’s TRPCBroker.

5. Associate the TFMListBox or TFMComboBox with the
TFMLister through the FMLister property.

6. To retrieve the current value of the pointer field: First use
the control’s GetList method to populate its Items property
with pointed-to file’s list of records. Then use the GetAndFill
method of the associated TFMGets component to select the
current pointer value from the list of possible values.

TFMComboBox:

TFMListBox:

Pointer: TFMComboBoxLookUp

1. Add a TFMComboBoxLookUp to your form. This control
performs lookups "on-the-fly" (the entire list of possible
records does not have to be retrieved into the control).

2. Set its properties as described in "Data Control Property
Settings for All Field Types" above.

3. Add a TFMLister component to your form. It must be
dedicated entirely to servicing the pointer field.

4. Set the TFMLister’s FileNumber property to that of the
pointed-to file. Make sure its FieldNumbers property
contains at least ’.01’. Set its RPCBroker property to the
TRPCBroker component on your form.

5. Optionally set the TFMLister’s Number property to restrict
the number of records returned in any one lookup when the
user enters ’?’ or leaves the edit box null and presses the
down-arrow. This enables a "<<< More >>>" item at the end
of the Items list so the user can request more records if
needed.

6. Associate the TFMComboBoxLookUp with the TFMLister
through its FMLister property.

7. You don’t need to populate the TFMComboBoxLookUp’s
Items property prior to calling GetAndFill, because lookups
are performed on the fly.

8. Because TFMComboBoxLookUp performs server-side calls
automatically you application will need to register the DDR
LISTER and DDR FINDER RPCs. For more information on
registering RPCs, see the RPC Broker documentation.

TFMComboBoxLookUp:

How To: By VA FileMan Field Type

3-4 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

Pointer: TFMLookUp

You can also edit pointer fields with the TFMLookUp custom dialog. This can be useful if the
pointer field points to a file with a huge number of records; the TFMLookUp custom dialog
simplifies lookups in large files.

Use a FileMan data control such as TFMLabel or TFMEdit to display the current value of the
pointer field. If you use TFMEdit you should set its ReadOnly property set to True. Then a button
you place next to the control could invoke the Execute method of TFMLookUp to edit the value
of the pointer field.

For a complete list of steps and a code sample, see the online FMDC.HLP help file.

Word Processing: TFMMemo

1. Add a TFMMemo component to your form.

2. Set its properties as described in "Data Control Property
Settings for All Field Types" above.

3. Make sure you set its FMFile property to the file number
of the file containing the word processing field, and
FMField to the word processing field number. Don’t use
the subfile number of the word processing field.

TFMMemo:

Computed: TFMLabel or TFMEdit

1. Add a TFMLabel or TFMEdit component to your form.

2. Set its properties as described in "Data Control Property
Settings for All Field Types" above.

3. Unlike other field types, no automated OnExit processing
or filing is needed for computed fields since they are
read-only.

4. If you are using a TFMEdit control, set its ReadOnly
property to True, so users don’t think that they can edit
the field (and so that filing is never attempted).

TFMLabel:

TFMEdit:

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 4-1

4. How To: By Task

This chapter demonstrates how to accomplish the most common VA FileMan record-
editing tasks.

Selecting a Record

The procedure below describes how to select a record with the TFMLookUp custom
dialog. See the online FMDC.HLP help file for additional ways to select records.

To select a record with a TFMLookUp component

1. Add a TFMLister component to your form.

2. Set the TFMLister’s RPCBroker property to point to your form’s RPCBroker component.

3. Set the TFMLister’s FileNumber property to the file to do the lookup in.

4. Optionally set the TFMLister’s Number property to restrict the number of records returned
when the TFMLookUp window is first opened (particularly for files with large numbers of
records). Setting this property enables the TFMLookUp More button so that the user can
request more records if needed.

5. Add a TFMLookUp component to your form.

6. Set the TFMLookUp’s FMLister property to the new TFMLister.

7. Add a button to your form so the user can do a lookup. Set the button’s Caption to
something the user will recognize, e.g. "Choose User" if you’re doing a lookup in the New
Person file.

The button’s OnClick event should call the Execute method of the TFMLookUp component
to do the lookup. It can make the retrieved record number, if any, available to a TFMGets
component so that the TFMGets is ready to retrieve the record (see the following section).
For example:

procedure TForm1.Button1Click(Sender: TObject);
var
 AddRecord :Boolean;
begin
 FMLookUp1.AllowNew:=False; // disallow adding records
 if FMLookUp1.Execute(AddRecord) then
 TFMGets1.IENS:=FMLookUp1.RecordNumber+’,’
 else
 ShowMessage(’You did not select a record.’);
end;

How To: By Task

4-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

Retrieving a Record

To retrieve a record from the server, use the TFMGets component. Its GetAndFill
method retrieves fields from a record on the server and populates a set of associated
data controls with the retrieved values.

The following should be set prior to calling the code example below:

• TFMGets.FileNumber should be set to the file to retrieve the record from.

• All data controls should be associated with the TFMGets component (through
their FMGets properties).

• All data controls’ FMFile and FMField properties should be set to reflect the file
and field number that they should be editing.

The following code retrieves a record and populates the associated controls with
appropriate field values:

// Set TFMGets.IENS to IENS (#+’,’ for top-level records)
// of the record to retrieve
FMGets.IENS:=TFMLookup1.RecordNumber+’,’;
// if you have TFMListBox or TFMComboBox controls to get lists for,
// get the lists here before calling GetAndFill.
FMListBox1.Getlist;
// Now you can call TFMGets.GetAndFill.
FMGets1.GetAndFill;
// Check for errors after the server call.
if FMGets1.ErrorList.Count>0 then FMGets1.DisplayErrors;

Note The Items property of
TFMListBox and TFMComboBox
controls must be populated before
calling TFMGets.GetAndFill. Do this by
calling the GetList method of the data
control before calling GetAndFill. Then
GetAndFill can retrieve the current
field value, and select the corresponding
value in the control’s Items property as
the control’s current value.

About Error Checking

Error checking is provided for each of the data
access components. Whenever the data access
components make a server call (invoking an M
routine on the server) there is the potential for
an error to occur on the server side, due to a
variety of conditions in the server environment.

You should check a data access component’s
ErrorList.Count property after making a server
call to see if a server-side error occurred. If any
did, you can call the component’s DisplayErrors
method to display those errors to the user
(typically the error number and text from a DBS
error is what is displayed), and then branch
accordingly to gracefully handle the error
condition.

How To: By Task

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 4-3

Providing Automated OnExit Processing for Controls

Each time a user enters a data value in a data control, there is a set of tasks you
would typically perform:

1. Check if the user changed the data value.

2. If the control’s FMRequired property is True, and the user deleted the data
value, warn the user that the value is required, and reset the control’s value
to its previous state.

3. Otherwise, validate the changed value (usually needed only for TFMEdit
controls):

a. If the value is invalid, return the control’s value to the original and
provide the user help on why the value was invalid.

b. If the value is valid, update the control’s display value from what user
typed to validated external form of field value, if necessary.

4. If the value is valid, update the control’s FMCtrlInternal and
FMCtrlExternal properties to reflect the internal and external VA FileMan
forms of the control’s value (except for TFMMemo controls).

5. Unless the changed value is invalid, tell the associated TFMFiler that the
control has data to file (with the TFMFiler’s AddChgdControl method).

A good place to perform these actions is in a control’s OnExit event handler. Coding
these actions by hand for each of your data controls would be laborious.
Fortunately, the FileMan data controls have an Automated OnExit processing
option you can turn on to perform each of these tasks automatically.

To turn on Automated OnExit Processing

1. Make sure each of your FileMan data controls is linked to a TFMFiler component through
their FMFiler properties.

2. Make sure each of your FileMan data controls is linked to a TFMValidator component
through their FMValidator properties (except TFMMemo, which does not need validation).

3. Set every data control’s coValOnExit value in the FMCtrlOptions property to True.

When Control Values are changed by Code

If a control’s value is changed by code (rather than through user interaction) the
OnExit event of the control is not triggered. Automated OnExit processing is not
triggered either. In this case, your code will need to perform any actions that you
would ordinarily expect to be performed by automated OnExit processing.

How To: By Task

4-4 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

Saving a Record

To save changes to the database, use the TFMFiler component. You can add filing
requests with its AddFDA and AddChgdControl methods, and file all pending
requests with its Update method.

To request filing:

• Call a TFMFiler’s AddFDA method to request filing
a standalone field value (not attached to a control).

• Call a TFMFiler’s AddChgdControl method to
request filing a field value in a FileMan data
control.

Hint If you are using
automated OnExit processing,
the AddChgdControl method is
automatically called when a
user changes the value in a
FileMan data control to a valid
new value.

To file all accumulated filing requests to the database, call the TFMFile’s Update
method.

To save accumulated filing requests

1. Provide some event that the user can trigger to save changes. The OnClick event of a
"Save Changes" button is one good place.

2. Provide code for this event that will save the changes to the server. This code should:

a. (Optional) Check if there are any data updates waiting to be filed (TFMFiler’s
AnythingToFile method). Because the Update method also calls AnythingToFile, your
code only needs to call AnythingToFile if that code needs to know if changes are waiting
to be filed.

b. If you designated any controls as required with the FMRequired property, call the
TFMFiler’s DataProblemCheck method to check that all required controls have values.

c. If no problems are found, call the TFMFiler’s Update method to file the accumulated
changes.

d. If Update fails, call the TFMFiler’s DisplayErrors method to display error information to
the end-user.

For example:

if FMFiler1.AnythingToFile then
 if FMFiler1.DataProblemCheck then
 FMFiler1.ProcessDataProblemList
 else
 if FMFiler1.Update then
 ShowMessage(’Changes filed!’)
 else
 FMFiler1.DisplayErrors
else
 ShowMessage(’No changes to file!’);

How To: By Task

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 4-5

Editing Records from Several Files Simultaneously

Previous chapters describe how to edit a set of fields from a single VA FileMan file.
Often, however, you may need to edit sets of fields from several related records in
different VA FileMan files simultaneously. To do this:

Data Controls Set each data control’s FMFile and FMField property to reflect the
file and field to edit.

TFMGets Use one TFMGets component for each file you need to retrieve
records for. Set the FMGets property of each data control to the
TFMGets component you’re using to retrieve records for that file.

TFMValidator Use one TFMValidator component for all data controls, regardless
of file and field being edited.

TFMFiler If the set of fields from several files is to be filed simultaneously,
and there are no dependencies between records, use a single
TFMFiler to file all fields for one or more files. Otherwise, use a
separate TFMFiler for each file you need to save records to. Set the
FMFiler property of each data control to the TFMFiler component
you’re using to save records for that file.

Other "How To" Tasks

Some other tasks within the scope of editing VA FileMan data in Delphi
applications are not addressed in this Getting Started Guide. For help on these and
other issues, see the online FMDC.HLP help file:

• Selecting records with TFMListBox, TFMComboBox, TFMComboBoxLookUp, or
TFMFindOne

• Retrieving records with TFMFinder

• Retrieving and filing data that is in multiples

• Providing manual OnExit processing for FileMan data controls

• Providing context-sensitive DD field help for data controls

• Adding new records using FileMan Controls or TFMLookUp

• Deleting Records

How To: By Task

4-6 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 5-1

5. Using Data Access Components Directly

Previous chapters in this guide demonstrate using the FileMan data access
components in conjunction with the FileMan data controls.

You can also use the FileMan data access components directly to retrieve, validate
and file VA FileMan data, without involving any FileMan data controls.

TFMGets: Retrieving a Record

You can call the TFMGets.GetData method to retrieve one or more field values from
a specified record. The field values are returned in the TFMGets.Results property
as follows:

Each field is retrieved into a TFMFieldObj object, whose structure is:

FldObj.IENS string (IENS of record)
FldObj.FMField string (field number)

FldObj.FMDBExternal string (external field value if requested)
FldObj.FMDBInternal string (internal field value if requested)
FldObj.FMWordProc boolean (if True, field is a word processing field)

FldObj.FMWPTextLine TStrings (Word processing field lines)

To retrieve a record without populating FileMan data controls

1. Add a TFMGets component to your form.

2. Set its RPCBroker property to your form’s RPCBroker component.

3. Set its FileNumber property to the file containing records to retrieve.

4. Set its FieldNumbers property to contain all fields to retrieve. You can set the property
directly or use the AddField method.

5. Set its IENS property to the IENS of the record to retrieve.

6. Call the GetData method to retrieve the record into the Results property.

7. Access each field’s retrieved TFMFieldObj object with the GetField method. For example:

 MyFldObj:=FMGets1.GetField(’.01’);

Using Data Access Components Directly

5-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

TFMLister: Retrieving a List of Records

You can call the TFMLister.GetList method directly to retrieve a set of records. The
set of records is returned in the TFMLister’s Results property, which is a TStrings
object. The format of returned data is as follows:

The structure of each returned TFMRecordObj is:

RecObj.IEN IEN of the record
RecObj.FMFldValues TFMFieldObj objects for fields requested in FieldNumbers

RecObj.FMIXExternalValues external form of index value(s) (TFMLister only) if requested
RecObj.FMIXInternalValues internal form of index value(s) (TFMLister only) if requested

RecObj.FMWIDValues Write Identifier of a file and the Identifier parameter result
RecObj.Objects Place to associate your own object

To retrieve a list of records with TFMLister

1. Add a TFMLister component to your form.

2. Set its RPCBroker property to the RPCBroker component your form is using.

3. Set the TFMLister’s FileNumber property to the file or subfile number to retrieve records
from. If retrieving from a subfile, use the IENS property to indicate the full path to the subfile.

4. Set the FieldNumbers property to the fields to retrieve with each record.

5. To use any of the optional parameters for the LIST^DIC call that affect how records are
retrieved, set the corresponding property in the TFMLister component (ListerFlags, FMIndex,
Identifier, PartList, and Screen).

6. Set any of the options controlling the TFMLister component with the ListerOptions property.

7. You can limit the number of records returned in any one call with the Number property. If
you need to retrieve more records, you’ll need to use the TFMLister’s GetMore method.

8. Invoke the TFMLister component’s GetList method to retrieve records. The list of records
returned in the Results property of the TFMLister. If you pass a TStrings object as a
parameter to the GetList method, that list is also populated.

9. You can access the TFMRecordObj object and TFMFieldObj objects returned for a particular
record (based on IEN) with the GetRecord and GetField functions as follows:

 MyRecordObj:=TFMLister1.GetRecord(IEN);
 MyFieldObj:=MyRecordObj.GetField(’.01’);
 MyFieldExternal:=MyFieldObj.FMDBExternal;

Using Data Access Components Directly

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 5-3

TFMValidator: Validating a Standalone Value

You can use the TFMValidator directly to validate any given value in the context of
a given file, field number and IENS.

To validate a standalone value

1. Add a TFMValidator component to your form.

2. Set its RPCBroker property to the RPCBroker component your form is using.

3. Set the TFMValidator component’s FieldNumber, FileNumber, IENS, and Value properties
directly to reflect the value to validate, and the context in which to validate it. Value should
be in the form as would be input by a user (not internal form!). Alternatively you can call the
TFMValidator’s Setup method to set these properties.

4. Call the Validate method of the TFMValidator. Results of the validation are returned in
TFMValidator’s Results property, in the format:

Results[0]: Internal VA FileMan form of value if input Value was valid, otherwise "^".
Results[1]: External VA FileMan form of value if input Value is valid.

TFMFiler: Filing Standalone Values

You can use the TFMFiler directly to file any given value to a specified VA FileMan
file, field and record.

To file standalone values

1. If you want to pre-validate the value to file, follow the steps in the "Validating a Standalone
Value" section above.

2. Use the TFMFiler’s AddFDA method to request filing for a given value. You pass as
parameters to this method the values that would comprise a VA FileMan Database Server
(DBS) FDA: FileNumber, IENS, FieldNumber and Value (internal). For example:

FMFiler1.AddFDA(’49’,’+1,’,’.01’,NewName);

3. Call the Update method of the TFMFiler to file the value. This method returns True if filing
was successful, or False if one or more errors were encountered on the server. You can use
the return value as follows in code to branch to an error handler:

if FMFiler1.Update then
 ShowMessage(’Changes filed!’)
else
 FMFiler1.DisplayErrors;

Using Data Access Components Directly

5-4 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

TFMFiler: Adding a Record

There are several ways you can add a new record to a file. This section describes
how to add a record using the TFMFiler.AddFDA method. For information on other
ways to add records see the online FMDC.HLP help file.

To add a new record to a file using TFMFiler.AddFDA

1. Get values from the user for the record’s .01 field, and for any required identifier fields.

2. Pre-validate each field value. To do this, set the FieldNumber, FileNumber, and Value
properties of a TFMValidator component for each field directly (or use its Setup method).
For validation, value should be in the form it would be input as a user (not internal form!) Set
the IENS property to the IENS including placeholder (e.g.,’+1,’) for the new record. Call the
TFMValidator ’s Validate method. This gives you the external and internal VA FileMan forms
of each field value. Ask for the value again if it fails validation.

3. Use a TFMFiler component’s AddFDA method to add FileMan Data Arrays (FDAs) (File,
record number, field and value) for these fields to the TFMFiler component’s list of fields to
be updated. Value should be in internal VA FileMan format (obtained from the validation step
above). For the record number for each field, use an identical placeholder, e.g. ’+1,’.

4. When you’re ready to file the new record, call the TFMFiler component’s Update method.
This adds the new record.

5. To find the actual IEN assigned to the new record, call the TFMFiler component’s FindIEN
method using the new record’s placeholder. If the return value is null, the record was not
created (and an error would have been returned by the Update call).

The following example adds a new record and displays the IEN of the added record:

procedure TForm1.AddRecord(Sender: TObject);
 var NewName, IEN: String;
begin
 NewName:= InputBox(’Add a New Service’, ’Service Name: ’, ’’);
 FMValidator1.Setup(’49’,’+1,’,’.01’,NewName);
 If not FMValidator1.Validate then
 FMValidator1.DisplayErrors
 else begin {file}
 FMFiler1.AddFDA(’49’,’+1,’,’.01’,NewName);
 if not FMFiler1.Update then FMFiler1.DisplayErrors;
 //get IEN of new record}
 IEN:=FMFiler1.FindIEN(’+1,’);
 if IEN <> ’’ then FMGets1.IENS:=IEN+’,’;
 end; {file}
end;

Once you have the IEN for the new record you’ve created, you could use a TFMGets
component to populate a set of FileMan data controls with the new record’s values.

March 1998 FileMan Delphi Components V. 1.0 Getting Started Guide 6-1

6. FMDC.HLP Help File

For complete information on the FileMan Delphi Components, including full
listings of each component’s methods and properties, see the FMDC.HLP help file
provided with the FileMan Delphi Components.

FMDC.HLP Help File as Context-Sensitive Help

You can integrate the FMDC.HLP help file with Delphi’s help. This means that you
can select a FileMan component on a Delphi form, or a FileMan component property
in Delphi’s Object Browser, press F1, and automatically access the corresponding
help file topic from FMDC.HLP. For more information, see the FileMan Delphi
Components V. 1.0 Installation Guide.

Accessing the FMDC.HLP Help File Directly

You can invoke the FMDC.HLP file directly by making a Windows shortcut or
desktop icon for it. Your shortcut or icon should load the copy of the FMDC.HLP file
that you place in your DELPHI\HELP directory during installation.

FMDC.HLP Help File

6-2 FileMan Delphi Components V. 1.0 Getting Started Guide March 1998

	Contents
	FMDC Web Site
	Related Manuals
	1. Introduction
	FMDC Object Hierarchy

	2. Quick Start Guide
	3. How To: By VA FileMan Field Type
	4. How To: By Task
	Selecting a Record
	Retrieving a Record
	Automated OnExit Processing
	Saving a Record
	Editing Records from Several Files Simultaneously

	5. Using Data Access Components Directly
	TFMGets: Retrieving a Record
	TFMLister: Retrieving a List of Records
	TFMValidator: Validating a Standalone Value
	TFMFiler: Filing Standalone Values
	TFMFiler: Adding a Record

	6. FMDC.HLP Help File

